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COMMENT 

Monte Carlo study of random walks on a 2~ gasket fractal in 
an external field 

Gi Ok Kim, Jong Hoon O h t  and Jong-Jean Kim 
Department of Physics, Korea Advanced Institute of Science and Technology, PO Box 
150, Chongyangni, Seoul, Korea 

Received 11 August 1986 

Abstract. Using Monte Carlo simulation, random walks on a two-dimensional Sierpinski 
gasket in the presence of an external field were studied. It  was observed that the random 
walk motion of a particle displayed a crossover from anomalous diffusion to drift for a 
non-zero bias field, and the crossover time t , ,  was a decreasing function of the external 
bias field. The associated dynamic exponents obtained in our  computer simulation agree 
with the predictions of Stinchcombe's scaling treatment. 

Diffusion in fractal structures (de Gennes 1976, Mandelbrot 1983) has been of great 
interest to many research workers. Fractals can, in general, be divided into two classes: 
regular fractals which are geometrically self-similar, such as the family of the Sierpinski 
gaskets, and random fractals which are statistically self-similar, such as the percolation 
clusters (see Stauffer 1979 for a review), even though the former has been proposed 
as a model for the latter (infinite cluster backbones) at the percolation threshold. 

Most investigations of the random walk problem have been devoted to percolation 
clusters (Gefen et a1 1983, Gould and Kohin 1984, Rammal and Toulouse 1983) and 
self-avoiding walks (Helman et a1 1984, Ball and Cates 1984, Chowdhury and Chak- 
rabarti 1985), where it was found that systems close to the percolation threshold 
exhibited an anomalous diffusion regime with the mean-square displacement of the 
particle following a non-integral power law for distances less than the percolation 
correlation length. 

Random walks on regular fractals (Rammal and Toulouse 1983, Angles d'Auriac 
er a1 1983) have also shown the same non-classical behaviour as those on percolation 
clusters at the percolation threshold. 

Recently, many authors have studied random walks on random fractals, e.g., 
percolation clusters (Barma and Dhar 1983, Dhar 1984, Pandey 1984) and self-avoiding 
walks (Chowdhury 1985) in the presence of an external field, using scaling treatments 
or computer simulation methods. They predicted that under the external bias field the 
random walk motion would exhibit a crossover from diffusion to drift-like behaviour 
at a time t,, after switching the field on, and t,, should be a decreasing function of the 
bias field. This is known to be true in the case of dispersive hopping transport in 
amorphous materials in the presence of a strong electric field (Bottger and Bryskin 
1980, Adler and Silver 1982) and in the case of diffusion of ions in chromatographic 
columns. 
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Random walks on regular fractals in an external field were first discussed by 
Stinchcombe (1985) on the basis of the scaling argument for the two-dimensional 
triangular Sierpinski gasket. Important results of Stinchcombe's work include (i)  the 
anomalous dynamic critical exponent k = l / z  = log, 2 = 0.431 for the isotropic case, 
( i i )  bias field-induced crossover from diffusion to drift with exponent k = log, 2 = 1, 
and (iii) the irrelevance of the rotational anisotropy operator. 

In this comment we report our computer simulation work on the random walk in 
the two-dimensional triangular Sierpinski gasket under external fields of various 
strength and direction using the Monte Carlo method to examine the crossover 
behaviour and the power laws. 

We used a ten-stage two-dimensional Sierpinski gasket, which has 88 575 sites. The 
labelling procedure for the sites follows that of Angles d'Auriac er al (1983). 

Using the Monte Carlo method we simulated the diffusive motion of a particle on 
the Sierpinski gasket in the presence of an external field. 

In the Sierpinski gasket structure there are six directions for the random walker to 
jump on, but any site in the Sierpinski gasket lattice has only four nearest-neighbour 
sites, corresponding to four directions out of six possible ones. Thus in the case of 
unbiased diffusion, i.e. in the isotropic case, the probability for the particle to move 
from a site to any of its four possible nearest-neighbour sites is just a. On the other 
hand, when a bias field with intensity B(0 < B < 1) is switched on along a specified 
direction, the hopping probability for each of six possible directions would be dis- 
tributed as shown in figure 1. At each step from any site the probabilities for all the 
possible nearest-neighbour sites should be normalised. 

( 0 )  lbl  

Figure 1. Probability distribution for each of six possible directions ( U )  in the presence of 
a horizontally rightward bias field and ( b )  in the presence of a vertically upward bias field. 

Given the probabilities, we performed the routine random walk calculations and 
a large number of configurations for each value of t and B were generated by varying 
the initial position of the particle. The square of the end-to-end distance of a r-step 
random walk for a given B was averaged over all these configurations to obtain (Rf). 
The procedure was repeated for various values of t and B. 

An MV-10000 computer was used in the present work, where the statistical error 
bars were estimated to be less than 0.5%. 

We have examined the variation of the mean-square displacement of the particle 
with time for various intensities and directions of the bias field. 

In figure 2, the log-log plot of R against t for the isotropic case exhibits the power 
law R ( t ) K  t k  with the exponent k -- 0.436, and the random walk motion of the particle 
for the rotationally anisotropic case also shows the same behaviour as for the isotropic 



Monte Carlo study of random walks 1907 

Figure 2. Log-log plots of the RMS distance R with time t (0, isotropic case; X ,  rotationally 
anisotropic case). 

case, i.e. the dynamic exponents for the two cases are obtained to be the same. 
According to Stinchcombe ( 1985) the operator of the rotationally anisotropic diffusion 
is irrelevant. Therefore the rotational anisotropy has no effect on diffusion, and only 
the isotropic diffusion effect is exhibited. 

In the uniaxially anisotropic case (figures 3 and 4) the diffusive motion of a particle 
is changed into drift-like motion ( k  = 1) at a time tcr. For shorter times ( t  < tcr) the 
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Figure 4. Log-log plots of the RMS distance R with time t for various values of the bias 
field B along the upward direction of the Sierpinski gasket: 0, B = 0.13; X, B = 0.26; U, 
B = 0.39; V, B = 0.52. 

particle diffuses in the same way as for the isotropic case (k-0.436), but for longer 
times ( t  > tcr) the motion of the particle shows a new behaviour ( k  = 1) which represents 
the drift motion of the particle. This crossover behaviour is irrespective of the bias 
field directions, as shown in figure 3. 

Trapping effects arise frequently in percolation clusters due to cages or dead-end 
branches, but in our Sierpinski gasket we found no trapping and therefore no charac- 
teristic value of the field strength at which the drift velocity became zero (Barma and 
Dhar 1983). In figures 3 and 4 the slope of each curve tends to be flattened after long 
time t ,  but in this case the flattening of the curves occurs, not due to trapping of the 
particle, but due to the boundary effect of our finite Sierpinski gasket. However, it 
did not prevent us from observing the crossover behaviour of a particle. 

In figure 4 the RMS displacement of a particle with time t for various values of the 
bias field B is displayed, where the external field is applied along the upward direction 
of the Sierpinski gasket. The crossover time t,, decreases with the strength of the field 
B. This feature is similar to that in the case of the random walk on percolation clusters 
(Pandey 1984, Barma and Dhar 1983) and the self-avoiding walk (Chowdhury 1985). 

To summarise, we have observed the crossover behaviour from anomalous diffusion 
to drift for a particle on a regular fractal (Sierpinski gasket) in the presence of an 
external field. Our observations of the anomalous critical exponent k = 0.436 for 
isotropic diffusion dynamics, bias field-induced crossover to drift dynamics of the 
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exponent k = 1 and the irrelevant operator characteristics of rotational anisotropy agree 
very well with the values of Stinchcombe (1985). It seems to be advantageous to 
simulate diffusion studies of a particle on fractal structures in an external field on a 
regular fractal so long as we are not specifically interested in the trapping effect. 
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